On the optimal control of behaviour: a stochastic perspective.
نویسنده
چکیده
Evolution is a closed stochastic optimisation process driven by the interaction between behaviour and environment towards local maxima in fitness. It is inferred that nervous systems are selected to provide optimal control of behaviour (the 'assumption of optimality'), such that for some behaviours, the expectation of future hazards to survival are minimised. This is illustrated by goal-directed saccades in which minimising total flight-time of primary and secondary movements provides a better fit to observations than simply minimising the error of the primary movement. This optimisation is extended to intra-movement trajectories, where low-bandwidth (smooth) velocity profiles provide a more satisfactory description of observations than simple bang-bang control. Since minimum-time behaviours cannot be controlled by error feedback, it is concluded that the cerebellum must be executing a real-time unreferenced optimisation process. This requires explorative as well as exploitative behaviour. Stochastic gradient descent is discussed as a possible means by which the cerebellum may optimise behaviour.
منابع مشابه
Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملNumerical Solution of Optimal Heating of Temperature Field in Uncertain Environment Modelled by the use of Boundary Control
In the present paper, optimal heating of temperature field which is modelled as a boundary optimal control problem, is investigated in the uncertain environments and then it is solved numerically. In physical modelling, a partial differential equation with stochastic input and stochastic parameter are applied as the constraint of the optimal control problem. Controls are implemented ...
متن کاملControl Theory and Economic Policy Optimization: The Origin, Achievements and the Fading Optimism from a Historical Standpoint
Economists were interested in economic stabilization policies as early as the 1930’s but the formal applications of stability theory from the classical control theory to economic analysis appeared in the early 1950’s when a number of control engineers actively collaborated with economists on economic stability and feedback mechanisms. The theory of optimal control resulting from the contributio...
متن کاملOptimal Stochastic Control in Continuous Time with Wiener Processes: General Results and Applications to Optimal Wildlife Management
We present a stochastic optimal control approach to wildlife management. The objective value is the present value of hunting and meat, reduced by the present value of the costs of plant damages and traffic accidents caused by the wildlife population. First, general optimal control functions and value functions are derived. Then, numerically specified optimal control functions and value func...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کاملAn Application of the Stochastic Optimal Control Algorithm (OPTCON) to the Public Sector Economy of Iran
In this paper we first describe the stochastic optimal control algorithm called ((OPTCON)). The algorithm minimizes an intertemporal objective loss function subject to a nonlinear dynamic system in order to achieve optimal value of control (or instrument) variables. Second as an application, we implemented the algorithm by the statistical programming system ((GAUSS)) to determine the optimal fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 83 1 شماره
صفحات -
تاریخ انتشار 1998